ANALYTICAL STUDY OF THE HEAT TRANSFER
IN A LONGITUDINAL FLOW PAST CYLINDRICAL
BODIES OF SMALL RADIUS AT

CONSTANT TEMPERATURE
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We obtain over a wide range of curvature parameters the analytical dependence of the heat
transfer in a longitudinal flow past cylindrical bodies of small radius at constant tempera-
ture.

In industrial methods for the manufacture of artificial, synthetic, and natural fibers, and also for
other materials of cylindrical shape and small radius, considerable importance attaches to the processes
of heat transfer and of heat-mass transfer. Studies have shown that the effectiveness of a significant por-
tion of industrial operations depends substantially on the intensity of the processes involving the transport
of heat and matter. An analysis of the intensity level of industrial heat and mass transfer processes in-
volved in the production of materials in the form of cylindrical bodies of small radius shows that the indus-
trial heat and mass transfer processes used are of low intensity in comparison with what is theoretically
possible,

In a series of experimental studies {1-3] it was shown that when the radius of the cylindrical bodies
is decreased (to tenths of a millimeter and less) a sharp growth in the heat transfer coefficients is ob-
served,

A series of analytical studies is also available (see [4-6]) in which heat transfer of cylindrical bodies
of small radius is analyzed on the basis of the equations of the boundary layer on a semiinfinite cylinder,
Singularities of this problem, associated with taking into account the transverse curvature of the boundary
layer, make it impossible to obtain an exact analytical solution, The asymptotic solutions obtained in these
papers are valid only in regions of large and small values of a typical curvature parameter, while the
approximate solutions, based on applying a one-parameter method for calculating the hydrodynamic and
thermal boundary layers, do not have very high accuracy.

We give below an approximate solution of the thermal boundary layer equation for the iongitudinal
flow past a cylindrical body of small radius. Based on this solution, an expression is obtained for the
Nusselt number; an analysis of this expression makes it possible to study the influence of the cylindrical
shape of the boundary layer on the heat transfer intensity.

We write the system of equations describing the stationary flow of an incompressible liquid and the
transport of thermal energy in the boundary layer on a semiinfinite circular cylinder in the form
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where 6 = ro(eﬁ (x)—l) is the thickness of the hydrodynamic boundary layer; 8(x) is a form parameter, de-
termined from the equation

4y
U:,g =p-2 [f252_ 3p + 2) ¢ — B 9] %’i— -

We now calculate the coefficient of 3T /9% on the right side of Eq. (5), taking Eq. (7) into account; we
obtain the following expression:
2 2
Py = U= <L> In . (9)

Bl \r To

Substituting the value of u from Eqs. (6) and integrating, we obtain

S AGI

0
To proceed it is necessary to solve Eq. (10) for r/r; and to express r?u as a function of y. Since
Eg. (10) is transcendental, we solve it approximately.

Consider Eq. (9) for (r—ry) /vy« 1. Expanding the functions (9) and (10) and taking note of the first
nonvanishing terms, we easily find that

1
1 2 T 1
- ]‘OUG° I,
Py =972 [ } ER 11
The expression (11) is found to be sufficiently accurate only in regions in which the parameter » = 8(x) /1,
is small. However, in a region far from the beginning of the boundary layer development, wherein % > 1,
the accuracy of the expression (11) decreases with an increase in the distance from the cylinder surface.

If we introduce the new dimensionless variables
X 1

_vs (gl 2 ¥ Y, 12
=12 el T o= o (12)
0
we can reduce Eqg, (5) with the boundary conditions (4) to the form
i 1

Tl 2y —21‘) (13)
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g4 = 7 We now apply a Laplace transformation with respect to ¢

- to equation (13). Moreover the equation for the dimensionless
/ temperature difference @ = (T -T,) (Tw~T,) is transformed
. /] with the aid of the substitution ¢, = <p3ﬂ into the following equa~
// . tion of Besse] type:
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Taking the inverse transform, we obtain the solution of equations (13) and (14) in the form

1
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where
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The resulting Nusselt number, based on the relation (15), has the form
A
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We note that with the use of Eq. (8) the integral in this expression can be reduced to the form
X BX g Lo L
0o Ve dX 1 g5 (1 3 B REPUR R & -
S p ~(,\)dx=’ p 2 ‘Edﬁ =g pz@ (—2—’ o7 Qﬁj - '“6‘5 2 (e - 3)“..—313 {1 —e), (18)
0

Consider the expression (17) in the region w « 1. If in this region we use an asymptotic expression
for the form parameter (10), namely, g~1(X) ~ 0.278 X1 / 2 and substitute it into the expression (17), we
obtain

1

Nu == 0.668  (Pr)3 X

1
: (19)
This expression coincides with the first term in the asymptotic expansion given in {4] in a region where the
curvature parameter is small.

The graph of Nu versus X, calculated from the expression (17), is shown in Fig. 1. For comparison
here we give the corresponding curves obtained by asymptotic methods and also the corresponding plate
solution. As can be seen from the figure, in the region X < 0.1 the solution obtained here coincides with
the asymptotic solution given in [4]. For large values of X the Nu values exceed those for the plate; how-
ever in the region X > 10% the curve does not go beyond the asymptotic solution given by Lighthill, Bourne,
and Davies [5, 6]. This is connected with the fact that for large values of the curvature parameter the
approximation (11) is less accurate, ~

Since we are interested in the characteristics of the boundary layer at the surface, we make our re-
sults more precise for large values of the curvature parameter by using a weighted form of the r’u versus
¥ relationship given in Eq. (11), i.e., we introduce a weight function A(X) at each boundary layer section;
thus
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Fig. 3. Dependence of the relative thickness of the boundary layer
on the curvature parameter, X = (Vx/Uw)r3.

Fig. 4. Dependence of the ratio of the temperature gradients on
cylindrical and flat surfaces on the cylinder diameter and the bound-
ary layer thickness, 6, mm.
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Replacing r?u and o in this equation by their values from equations (9) and (10), we find that this approxi-
mation corresponds tothe following approximation of the function appearing in Eq. (9):
1
r R

<_)' - = A(X)KLj' (2 nl 1) - 1J2 for r—r, << 8 (X). (21)

Ty Ty Ty / Ty
In accordance with the semi-integral method the values of A(X) must be determined from some in-

tegral condition. In this case it is convenient to use the condition for the equality of the approximate and

the exact values of the total heat flow

transported by the liquid into each boundary layer section. Equating the values of Q calculated from the
approximate and from the exact values of r?u in accordance with the relation (21), and taking, in a first
approximation, the temperature in the boundary layer distributed according to the logarithmic law (7), we
obtain the following expression:

6(X) o

|- flnede

AX) = : . (22)
U Q- = 1T
i

This expression is suitable for Pr > 1 when the thermal boundary layer is not thicker than the dynamic
boundary layer, When Pr < 1, the limits of integration in Eq. (22) must be changed to take into account
the relationship between the thicknesses of these boundary layers. The dependence of A on X, calculated
from this equation, is shown in Fig. 2.

1
E)

If we now substitute the expression (20) into Eq. (5) and introduce, in place of the first of Egs. (12),
the following transformation for ¢,

X

!
{A[p ] 7ax (23)
0

9]

i

o
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we again arrive at the problem defined by Eqs. (13) and (14), and to a solution of it in the form (15). How-
ever, taking into account the new £ versus X relationship (23), we find that the expression for the Nusselt
number now becomes
PO G S S N O .t -+
3723 (PyTAX)p 2(X)Hﬁ 2(x)A(x)dx] . (24)
'(3) ;
The results calculated through the use of this function Nu(X), shown in Fig. 1, agree satisfactorily

with the exact asymptotic solutions in corresponding limiting regions for the values of the curvature param-
eter,

Nu-=

It follows from this figure that for identical values of the curvature parameter (V'x/Ij.,o)r% the heat trans-.
fer coefficient for a cylindrical body is always greater than for a flat plate. The increase in the heat trans-
fer is reinforced with a decrease in the diameter of the cylindrical body, which, in confrast to the other
quantities, enters the parameter as a squared quantity. In particular, for 2 change in diameter of the cylin~
drical body from 0.1 mm to 0.01 mm, i.e., a 10-fold decrease, the best transfer coefficient is reinforced by
a factor of 5.7, which agrees with the experimental data given in [1~3], whereas the boundary layer thick-
ness is decreased by only 15% (Fig. 3). This means that the growth in the heat transfer intensity is, in the
main, due to singularities arising from the cylindrical shape of the boundary layer. The cylindrical shape
of the boundary layer causes an increase in the surface of the following layers of the boundary layer. More-
over, the heat flow arriving per unit surface is diminished. This results in a much steeper change in the
temperature gradient in the boundary layer on the cylinder in comparison with that on a flat plate, There-
fore, as is evident on Fig. 4, with a decrease in the cylinder radius, other conditions being equal, the
temperature gradient on the surface increases, It is natural that the influence found to exist on the heat
transfer, although not quite substantial, does, in fact, show a decrease in the boundary layer thickness,

It follows from these results that in the manufacture of cylindrically shaped materials of small radius
an intensification of heat transfer can be achieved, in the main, not by increasing the flow speed past these
cylinders, but by organizing the heat transfer conditions so that the materials would present the smallest
possible diameters.

NOTATION
X, r are the space ecoordinates;
u, v are the longitudinal and transverse flow velocity components;
T is the temperature;
ro is the cylinder radius;
Ty is the surface temperature;
U, T are the velocity and temperature of undisturbed flow;
v is the kinematic viscosity;
Pr is the Prandtl number;
P is the stream function;
o is the boundary layer thickness;
B is the form parameter;
n is the curvature parameter;
£ ¢, X are the dimensionless variables;
@ is the dimensionless temperature;
S is the parameter of Laplace transformation;
r is the gamma-function;
Z is the similarity variable;
A is the thermal conductivity;
Nu is the Nusself number;
@ is the degenerated hypergeometric function;
Q is the heat flux,
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